Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chem ; 96(14): 5711-5718, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551104

RESUMO

Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.

2.
J Transl Med ; 22(1): 216, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424632

RESUMO

Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, but the early diagnosis rate is low. The RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in several cancers but its mechanism of action in LUAD is unclear. In this study, the biological activity of MEX3C was assessed in LUAD. MEX3C and RUNX3 mRNA levels in the tissues of LUAD patients were determined using reverse transcription­quantitative PCR. The involvement of MEX3C in the growth and metastasis of LUAD cells was measured by EdU assay, CCK-8, colony formation, Transwell assay, TUNEL, and flow cytometry. Expression of apoptosis and epithelial-mesenchymal transition related proteins were determined using western blotting analysis. LUAD cells transfected with si-MEX3C were administered to mice subcutaneously to monitor tumor progression and metastasis. We found that MEX3C is strongly upregulated in LUAD tissue sections, and involved in proliferation and migration. A549 and H1299 cells had significantly higher levels of MEX3C expression compared to control HBE cells. Knockdown of MEX3C dramatically decreased cell proliferation, migration, and invasion, and accelerated apoptosis. Mechanistically, we demonstrate MEX3C induces ubiquitylation and degradation of tumor suppressor RUNX3. Moreover, RUNX3 transcriptionally represses Suv39H1, as revealed by RNA pull-down and chromatin immunoprecipitation assays. The in vivo mice model demonstrated that knockdown of MEX3C reduced LUAD growth and metastasis significantly. Collectively, we reveal a novel MEX3C-RUNX3-Suv39H1 signaling axis driving LUAD pathogenesis. Targeting MEX3C may represent a promising therapeutic strategy against LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Ligases/genética , Ligases/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação
3.
RSC Adv ; 14(10): 6470-6475, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38390499

RESUMO

In this work, an eco-friendly, green, efficient approach for oxidative and reductive Heck-Mizoroki (HM) reactions was developed, which offered acceptable yields from first-pass experiments. Mono-arylation was achieved without the use of ligands, directing groups, or prefunctionalized alkenes. Considering mild reaction conditions, good functional group compatibility, and great regioselectivity, the method can find broad applications in novel medicine and material development and discovery processes.

4.
Small ; : e2311993, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363065

RESUMO

Excessive ultraviolet (UV) radiation has serious damage to human's health, therefore the development of visible, portable, and wearable sensor for monitoring UV radiation, especially the cumulative UV dosage, is highly desired but full of challenges. Herein, a wearable and flexible UV dosimeter based on photochromic perovskite nanocrystals (PNCs) is designed. The obtained CsPbCl3 PNCs dispersed in dibromomethane (PNCs-DBM) undergo continuous, vivid, and multiple (from very weak purple to blue, cyan, and finally strong green) color change in response to UV radiation. It is demonstrated that the UV-induced degradation of DBM and subsequent anion-exchange reaction between CsPbCl3 and Br- , play a crucial role in the color change of PNCs-DBM. The properties of continuous fluorescence color change and enhanced fluorescence intensity enable the construction of sensitive and visible UV dosimeter. Furthermore, by integrated photochromic PNCs with flexible bracelet or PDMS substrate, a wearable UV sensor or a multi-indicator array for the detection of solar UV dosage is developed. This work may advance the fundamental understanding about photochromic perovskite, and show promising application of perovskite nanomaterials in easily fabricated, low-cost, visualized, and wearable solar UV dosimeter.

5.
Anal Chem ; 95(31): 11839-11848, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489605

RESUMO

Recently, the newly emerging lead halide perovskite nanocrystals (PNCs) have been intensely researched in many fields, such as light-emitting diodes (LEDs), solar cells, lasers, and display devices. The extremely high fluorescence quantum yield (near 100%) of PNCs over classic fluorescent materials would enable good applications of PNCs in sensing. However, the study on PNCs for bio- and chemical sensing, especially for detecting targets that exist in aqueous medium, faces great challenges due to the well-known instability of PNCs in polar solvents, especially water. Although the encapsulation of polymers or inorganic materials can efficiently protect PNCs from decomposition in aqueous solution, the sensing based on the interaction between PNCs and targets is severely hindered by the compact protection coating at the surfaces of PNCs. In this work, novel water-dispersed PNCs (W-PNCs), i.e., CsPbBr3@CsPb2Br5 PNCs, with strong fluorescence and excellent water stability were synthesized from OAm-capped CsPbBr3 PNCs by a simple "oil-solid-water" phase transition. The W-PNCs without being encapsulated with compact polymers or inorganic materials can sensitively and stably sense targets in the pure water phase via direct chemical reactions. For the first time, ion exchanges between PNCs and halide ions and their effects on the fluorescence wavelength of PNCs were investigated in the pure water phase, on the basis of which a new, visualized, selective, and sensitive smartphone-based sensing platform for halide ions has been established by the integration of the conveniently prepared W-PNC nanoprobe and the portable mobile phone. It is envisioned that the uncoated but extremely water-stable and highly fluorescent W-PNCs have promising applications in chemical sensing, biosensing, and bioimaging of targets in aqueous medium.

6.
Environ Toxicol ; 38(11): 2621-2631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466199

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide and non-small cell lung cancer (NSCLC) represents 85%. Mougeotia nummuloides and Spirulina major have been reported to possess anticancer properties. 1-Monopalmitin (1-Mono) is the principle active constituent in these natural plants. It is debating whether 1-Mono exerts antitumor effects. Therefore, we explored the role of 1-Mono in lung cancer in vitro. Results showed that 1-Mono significantly inhibited A549 and SPC-A1 cell proliferation, induced G2/M arrest and caspase-dependent apoptosis. Moreover, it suppressed the protein expression of inhibitors of apoptosis proteins (IAPs). It was further demonstrated that 1-Mono activated the PI3K/Akt pathway, suppression of PI3K/Akt activities with LY294002 and Wortmannin partially attenuated 1-Mono-mediated anticancer activities, indicating that 1-Mono-induced antitumor effects is dependent on PI3K/Akt pathway. 1-Mono induced cytoprotective autophagy since autophagy inhibitor Chloroquine dramatically enhanced 1-Mono-induced cytotoxicity. In summary, our results showed 1-Mono kills lung cancer through PI3K/Akt pathway, providing novel options for lung cancer administration.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Proliferação de Células
7.
Anal Chem ; 95(30): 11475-11482, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471238

RESUMO

As recently emerging nanomaterials, boron nanosheets (BNSs) have attracted more and more attention in various fields such as supercapacitors, photodetectors, bioimaging, and electrocatalysis due to their advantages of good biological compatibility, environmental friendliness, and good electro-optical properties. However, the study and application of BNSs in chemical and biological sensing are still in the infant stage, mainly due to the requirement of complicated, high-cost, and time-consuming preparation strategies. In this work, a new class of BNSs, namely oxidized-BNSs (i.e., ox-BNSs), were easily and rapidly synthesized by chemically treating boron powder with diluted HNO3 in a very short time (less than 15 min). The composition, morphology, optical property, and peroxidase mimetic activity of obtained ox-BNSs were investigated in detail. The prepared ox-BNSs were several-layered nanosheets with abundant oxygen-containing groups, emitted blue fluorescence, and possessed good intrinsic peroxidase mimetic activity, based on which a sensitive and selective colorimetric sensor was developed for detection of H2O2 and glucose. The new easy preparation strategy and good sensing performances of the prepared ox-BNSs would greatly stimulate the study and application of BNSs in chemo- and biosensing.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Boro , Peróxido de Hidrogênio/química , Glucose , Nanoestruturas/química , Peroxidases/química , Colorimetria/métodos , Peroxidase/química , Técnicas Biossensoriais/métodos
8.
J Orthop Surg Res ; 18(1): 409, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277810

RESUMO

BACKGROUND: Glucocorticoid-induced osteoporosis (GIOP) is a disease in which long-term use of glucocorticoid causes bone loss, deterioration of bone microstructure and fracture. Currently, clinical drugs targeting this disease have certain side effects. There is still a need to find effective drugs with fewer side effects. The theory of traditional Chinese medicine suggests that YGJ has therapeutic effect on GIOP, but it has not been explained. Therefore, this study aims to explore the protective effect of YGJ on GIOP mouse models and elucidate the underlying mechanism through LC-MS-based metabolomics analysis. METHODS: The general condition of 8 week age male C57BL/6J mice was recorded after 8 weeks of treatment with dexamethasone (DEX) and YGJ. Bone-related parameters and bone morphology were determined by Micro-CT. HE staining was used to observe the pathological changes of bone tissue. Serum levels of bone metabolism markers were detected by ELISA. Liver metabolomics analysis was conducted to search for the significant markers of anti-GIOP of YGJ and the metabolic pathway affecting it. RESULTS: After treatment, YGJ significantly reversed the weight loss caused by DEX; increase the number of bone trabecular in ROI region, significantly improve the bone-related parameters of GIOP mice, and increase the levels of alkaline phosphatase and osteocalcin. In the study of metabolic mechanism, YGJ reversed 24 potential markers in GIOP mice. These included cortisol, 3-hydroxybutyric acid, taurine, esculin and uric acid, which are closely associated with osteoporosis. Topological analysis results showed that YGJ had the most significant effect on taurine and hypotaurine metabolism, with - log10 (P) > 2.0 and Impact > 0.4. CONCLUSIONS: Yi-Guan-Jian decoction can increase bone density and improve bone microstructure by regulating the levels of alkaline phosphatase and osteocalcin and reverse bone loss in GIOP mouse model. The underlying metabolic mechanism may be related to taurine and hypotaurine metabolic pathway.


Assuntos
Glucocorticoides , Osteoporose , Camundongos , Masculino , Animais , Glucocorticoides/efeitos adversos , Fosfatase Alcalina/metabolismo , Osteocalcina , Camundongos Endogâmicos C57BL , Osteoporose/induzido quimicamente , Osteoporose/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Metabolômica/métodos , Taurina/efeitos adversos , Modelos Animais de Doenças
9.
Small ; 19(33): e2301010, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086127

RESUMO

The intrinsic instability of halide perovskites toward to external stimulus, has created a competitive advantage for designing stimuli-responsive materials. However, the external environment tuning reversibly fluorescence emission of perovskite system is still limited. In this work, humidity is verified to act as a new option to modulate the emission properties of mixed-halide perovskite. The perovskite nanocrystals (PNCs) photoirradiated in dichloromethane are easily and stably redispersed in water, and emit bright fluorescence which is quite different from the original. Moreover, the perovskites confined on glass slide can reversibly switch their fluorescence between blue and green colors under moisture. It is demonstrated that the factors of different solubilities of CsCl and CsBr in water, the structural transformation of perovskites and the confine of glass matrix play key roles in the reversible transformation. Finally, the combination of hydrochromic CsPb(Brx Cly )3 and water-resistant CsPb(Brx Cly )3 -polymethyl methacrylate have been applied in advanced anti-counterfeiting, which greatly improves the information security. This work not only give an insight into the effects of humidity on fluorescence and structures of PNCs, but also offer a new class of hydrochromic PNCs materials based on reversible emission transformation for potential application in sensors, anti-counterfeiting and information encryption.

10.
Anal Chem ; 94(49): 17142-17150, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36444997

RESUMO

Perovskite quantum dots (PQDs) as recently emerging electrochemiluminescence (ECL) luminophores have been paid much attention due to their good ECL activity, narrow ECL spectra, and easy preparation. However, the PQDs used for ECL sensing were mainly inherited from those PQDs prepared as strong fluorescence (FL) luminophores, which would limit the finding of highly ECL PQDs for sensing due to the very different mechanisms in generating excited-state luminophores between ECL and FL. In order to obtain highly electrochemiluminescent PQDs, for the first time we proposed to synthesize PQDs for ECL sensing rather than for FL-based analysis by optimizing the synthesis conditions. It was revealed that the volume of the precursor solution, the concentrations of CsBr and PbBr2, the amount of capping reagents, and the synthesis reaction temperature all significantly affect the ECL activity of PQDs. On the basis of the optimization of the synthesis conditions, we obtained a new type of PQDs with high ECL activity. The new PQDs were characterized by several technologies, such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy dispersive X-ray spectrum, to be the hybrids of 3D PQDs (CsPbBr3) and 0D PQDs (Cs4PbBr6) with unique morphologies, i.e., Cs4PbBr6@CsPbBr3 PQD nanoacanthospheres (PNAs), in which Cs4PbBr6 was as the core and CsPbBr3 served as the shell. The obtained Cs4PbBr6@CsPbBr3 PNAs had much higher (>4 times) ECL activity than the prevailing 3D (CsPbBr3) PQDs. Finally, the novel Cs4PbBr6@CsPbBr3 PNAs have been applied for the ECL sensing of bisphenol A (BPA), showing a promising application of the highly electrochemiluminescent PQDs in analytical chemistry.

11.
RSC Adv ; 12(29): 18722-18727, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873337

RESUMO

We report a general protocol for ortho-C-H fluoroalkoxylation of benzaldehydes and benzylic amines utilizing an inexpensive amino amide as a transient directing group. In the presence of an electrophilic fluorinating bystanding oxidant and fluorinated alcohols, a wide range of benzaldehydes and benzylic amines could be oxygenated selectively at the ortho positions to afford fluoroalkyl aryl ethers. This elegant approach would provide appealing strategies for synthesis of drug molecules and natural products.

12.
Oncol Lett ; 22(5): 754, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34539858

RESUMO

In the present study, due to the complex and numerous targets of Sarcandrae Herb (also known as Zhong Jie Feng), network pharmacology was performed to analyze its therapeutic effect on 2 cervical cancer cell lines, which could assist with the development of novel therapies. The results suggested that the natural flavonoid quercetin (Que), the effective antitumor ingredient in SH, which is widely present in a variety of plants, may depend on the target, EGFR. Previous studies have shown that EGFR serves a crucial role in the occurrence and development of cervical cancer, but its downstream molecules and regulatory mechanisms remain unknown. The anti-cervical cancer cell properties of Que, which are present in ubiquitous plants, were examined in vitro to identify the association between Que and its underlying pathway using MTT assays, flow cytometry, western blot analysis and Transwell assays. It was found that Que reduced cervical cancer cell viability, promoted G2/M phase cell cycle arrest and cell apoptosis, as well as inhibited cell migration and invasion. The Tyr1068 phosphorylation site of EGFR and the corresponding ERK target were also examined and the 2 kinases were markedly activated by Que. Furthermore, the EGFR inhibitor, afatinib and the ERK inhibitor, U0126 blocked the increase of EGFR and ERK phosphorylation, and resulted in a notable enhancement of apoptosis and cell cycle arrest. Therefore, to the best of our knowledge, the current results provided the first evidence that EGFR and ERK activation induced by Que could resist Que-induced anticancer activities. On this basis, the present study determined the role of EGFR and the underlying signaling pathways involved in the anti-cervical cancer malignant behavior induced by Que and identified the negative regulatory association.

13.
Biomark Med ; 15(11): 891-897, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34229450

RESUMO

Aim: To investigate the effect of rs3733846 in the flanking region of miR-143/145 on susceptibility to cervical squamous cell carcinoma (CSCC). Materials & methods: We collected venous blood samples from 242 CSCC patients and 250 healthy controls. The rs3733846 polymorphism was genotyped by SnaPshot and Sanger sequencing. The expression of miR-143/145 in CSCC tissues was detected by quantitative real-time PCR. Results: The rs3733846 AG genotype was associated with a decreased risk of CSCC in genetic model (AGvs.AA: adjusted odds ratio [OR]: 0.44; 95% CI: 0.30-0.66; p < 0.001). Patients with the rs3733846 AG/GG genotypes had a reduced risk of developing poorly differential status (OR: 0.57; 95% CI: 0.33-0.98; p < 0.04) and lymph node metastasis (OR: 0.49; 95% CI: 0.26-0.92; p < 0.03). Conclusion: The rs3733846 in the flanking region of miR-143/145 was related to the susceptibility of CSCC.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos
14.
Int J Nanomedicine ; 16: 2775-2787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880023

RESUMO

PURPOSE: With the advance of screening techniques, there is a growing number of low-risk or intermediate-risk prostate cancer (PCa) cases, remaining a serious threat to men's health. To obtain better efficacy, a growing interest has been attracted to develop such emerging treatments as immunotherapy and focal therapy. However, few studies offer guidance on whether and how to combine these modalities against PCa. This study was designed to develop dual-functional nanoparticles (NPs) which combined photothermal therapy (PTT) with immunotherapy and determine the anti-tumor efficacy for PCa treatment. METHODS: By a double emulsion technique, the drug nanocarrier, poly(lactic-co-glycolic acid) or PLGA, was applied for co-loading of a fluorescent dye, indocyanine green (ICG) and a toll-like receptor 7/8 (TLR7/8) agonist resiquimod (R848) to synthesize PLGA-ICG-R848 NPs. Next, we determined their characteristic features and evaluated whether they inhibited the cell viability in multiple PCa cell lines. After treatment with PLGA-ICG-R848, the maturation markers of bone marrow-derived dendritic cells (BMDCs) were detected by flow cytometry. By establishing a subcutaneous xenograft model of mouse PCa, we explored both the anti-tumor effect and immune response following the NPs-based laser ablation. RESULTS: With a mean diameter of 157.7 nm, PLGA-ICG-R848 exhibited no cytotoxic effect in PCa cells, but they significantly decreased RM9 cell viability to (3.9±1.0)% after laser irradiation. Moreover, PLGA-ICG-R848 promoted BMDCs maturation with the significantly elevated proportions of CD11c+CD86+ and CD11c+CD80+ cells. Following PLGA-ICG-R848-based laser ablation in vivo, the decreased bioluminescent signals indicated a significant inhibition of PCa growth, while the ratio of splenic natural killer (NK) cells in PLGA-ICG-R848 was (3.96±1.88)% compared with (0.99±0.10)% in PBS group, revealing the enhanced immune response against PCa. CONCLUSION: The dual-functional PLGA-ICG-R848 NPs under laser irradiation exhibit the anti-tumor efficacy for PCa treatment by combining PTT with immunotherapy.


Assuntos
Imidazóis/uso terapêutico , Verde de Indocianina/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Verde de Indocianina/administração & dosagem , Lasers , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Neoplasias da Próstata/patologia
16.
Onco Targets Ther ; 13: 13437-13450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33447049

RESUMO

INTRODUCTION: The incidence and mortality rates of lung cancer rank top in the different types of cancers in China. Licochalcone A (LA) is a flavonoid extracted from the roots of licorice with antitumor effects in various cancers in vitro and in vivo. However, the role of LA in non-small cell lung cancer (NSCLC) remains largely unclear. METHODS: The cell viability was measured by MTT assay, Edu staining and colony formation assay. Apoptosis was investigated using Annexin V/PI double-stained assays with flow cytometry. Real-time quantitative RT-PCR was carried out to investigate the expression of mRNA of related proteins. Western blotting was used to investigate the expression of related proteins. RESULTS: The results show that LA inhibits the proliferation of NSCLC cells in a dose-dependent manner and induces apoptotic cell death. Moreover, LA significantly suppresses the expression of c-IAP1, c-IAP2, XIAP, Survivin, c-FLIPL and RIP1 without influencing the level of mRNA. Cycloheximide chase assay demonstrates that LA greatly decreases the stability of Survivin, XIAP and RIP1. Mechanistic studies indicate that LA induces cytoprotective autophagy since block of autophagy with CQ greatly enhances LA-induced anticancer activities. Furthermore, LA rapidly induces ERK and p38 activation in a time-dependent manner in both A549 and H460 cells, but suppresses the activities of c-Jun N-terminal kinase (JNK); suppression of ERK not p38 with inhibitor attenuates LA-induced autophagy, while it remarkably enhances LA-induced cytotoxicity in lung cancer cells and further promotes the degradation of apoptosis-related proteins. DISCUSSION: The results of this study provide novel insights on the role of apoptosis-related proteins and the MAPKs pathway in the anticancer activities of LA.

17.
Mol Genet Genomic Med ; 7(10): e00860, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31441605

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play an important regulatory role in carcinogenesis and cancer progression. Aberrant expression of miR-497-5p has been reported in various human malignancies. However, the role of miR-497-5p in hepatocellular carcinoma (HCC) remains unclear. RESULTS: In this study, we found that miR-497-5p was downregulated in HCC tissues. The low level of miR-497-5p in HCC tumors was correlated with aggressive clinicopathological characteristics and predicted poor prognosis in HCC patients. The overexpression of miR-497-5p significantly inhibited HCC cell proliferation, colony formation, and metastasis in vitro and vivo. Bioinformatics analysis further identified insulin-like growth factor 1 (IGF1) as a novel target of miR-497-5p in HCC cells. CONCLUSION: Our study suggested that miR-497-5p regulates HCC cell survival, partially through downregulation of IGF1. Therefore, the miR-497-5p/IGF1 axis might serve as a novel therapeutic target in patients with HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Proliferação de Células , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Apoptose , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Feminino , Humanos , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/genética , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico
18.
Biosci Rep ; 39(5)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31028134

RESUMO

Growing evidence has demonstrated that single-nucleotide polymorphisms (SNPs) in the promoter of miRNA may influence individuals' susceptibility to human diseases. We examined two SNPs rs10877887 and rs13293512 in the promoters of let-7 family to determine if the two SNPs were related to the occurrence of breast cancer (BC). Genotyping of the two SNPs was performed by PCR and restriction fragment length polymorphism analysis or TaqMan assay in 301 BC patients and 310 age matched controls. We found a higher frequency of rs13293512 CC genotype and rs13293512 C allele amongst BC patients (CC vs TT: adjusted odds ratio (OR) = 1.78; 95% CI: 1.14-2.80; P=0.012; C vs T: adjusted OR = 1.33; 95% CI: 1.06-1.67; P=0.013). Stratification analysis showed that rs13293512 CC genotype was associated with an increased risk of BC in patients with negative estrogen receptor (adjusted OR = 2.39; 95% CI: 1.32-4.30; P=0.004), patients with negative progesterone receptor (adjusted OR = 1.92; 95% CI: 1.11-3.33; P=0.02), patients with T1-2 stage cancer (adjusted OR = 1.77; 95% CI: 1.07-2.93; P=0.03), and patients with N1-3 stage cancer (adjusted OR = 1.89; 95% CI: 1.13-3.17; P=0.015). These findings suggest that rs13293512 in the promoter of let-7a-1/let-7f-1/let-7d cluster may be a possible biomarker for the development of BC in Chinese women.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , MicroRNAs/genética , Família Multigênica , Regiões Promotoras Genéticas/genética , RNA Neoplásico/genética , Adulto , China , Feminino , Humanos , Pessoa de Meia-Idade , Polimorfismo Genético , Fatores de Risco
19.
Chemistry ; 24(17): 4250-4254, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29392832

RESUMO

Single-layer carbon-based dots (SCDs) were chosen as a model to investigate the effect of the C-related dangling bonds with spin S=1/2 and functional groups on the electrochemiluminescent (ECL) and fluorescent (FL) properties of CDs. The C-related dangling bonds and functional groups of SCDs were tuned by chemical reduction with NaBH4 . There have several main findings via investigating the ECL and FL properties of SCDs before and after the chemical reduction. First, the FL and ECL of CDs are highly dependent on their concentration, and luminescent resonance energy transfer is observed in ECL studies when the concentration of CDs is high. Second, the ECL activity of CDs is greatly enhanced as the C-related dangling bonds increase, proving that the ECL of CDs originates from the C-related dangling bonds. Third, the FL of CDs is the synthesis of the inner FL originated from the contained isolated sp2 units and the defect FL from the C-related dangling bonds. The inner FL of CDs is enhanced greatly by removing the carboxyl groups, while the defect FL is increased slightly due to the increased C-related dangling bonds. We believe this study would promote our understanding in the ECL and FL mechanisms of CDs, advancing the applications of CDs based on their ECL and FL properties.

20.
Oncotarget ; 8(47): 82531-82540, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137282

RESUMO

miR-17-92 cluster is identified as a potential oncogenic miRNA. The aim of this study was to investigate the association of polymorphisms in the promoter region of miR-17-92 cluster with the risk of colorectal cancer (CRC). Three polymorphisms (i.e., rs9588884, rs982873 and rs1813389) in the promoter of miR-17-92 were analyzed among 874 cases and 1132 controls using a TaqMan allelic discrimination assay or a polymerase chain reaction-restriction fragment length polymorphism method. Relative expression of miR-17-92 was examined among CRC tumors and noncancerous tissues using quantitative reverse transcription-PCR. Transcriptional activities were measured using dual-luciferase reporter assay. We found a significantly reduced CRC risk with the rs9588884 (GG vs. CC: adjusted OR = 0.46, 95% CI, 0.35-0.62; dominant model: adjusted OR = 0.72, 95% CI, 0.59-0.86; recessive model: adjusted OR = 0.53, 95% CI, 0.40-0.69) and the rs982873 (CC vs. TT: adjusted OR = 0.60, 95%CI, 0.46-0.80; recessive model: adjusted OR = 0.62, 95% CI, 0.49-0.80). Haplotype analysis showed that the GCG haplotype had a decreased risk for CRC compared to the CTA haplotype (adjusted OR = 0.67, 95% CI, 0.57-0.79). The rs9588884 GG displayed a lower level of miR-20a and the rs982873 CC displayed a lower level of miR-17. Additionally, the rare allele of rs9588884 G and the rs982873 C revealed a reduced luciferase activity. These findings indicate that the rs9588884 GG and the rs982873 CC in the promoter of miR-17-92 may protect against CRC, possibly by decreasing transcriptional activity and eventually resulting in lower levels of miR-20a and miR-17.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...